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Abstract—The recent advancements in Artificial Intelligence,
particularly in large language models and generative models,
are reshaping the field of software engineering by enabling
innovative ways of performing various tasks, such as program-
ming, debugging, and testing. However, few existing works have
thoroughly explored the potential of AI in code generation and
software developers’ attitudes toward AI-assisted coding tools.
This knowledge gap leaves it unclear how AI is transforming
software engineering and programming education. This paper
presents a scalable crowdsourcing data-driven framework to
investigate the code generation performance of generative large
language models from diverse perspectives across multiple social
media platforms. Specifically, we utilize ChatGPT, a popular
generative large language model, as a representative example
to reveal its insights and patterns in code generation. First, we
propose a hybrid keyword word expansion method that integrates
words suggested by topic modeling and expert knowledge to filter
relevant social posts of interest on Twitter and Reddit. Then we
collect 316K tweets and 3.2K Reddit posts about ChatGPT’s
code generation, spanning from Dec. 1, 2022 to January 31,
2023. Our data analytics show that ChatGPT has been used
in more than 10 programming languages, with Python and
JavaScript being the two most popular, for a diverse range
of tasks such as code debugging, interview preparation, and
academic assignment solving. Surprisingly, our analysis shows
that fear is the dominant emotion associated with ChatGPT’s
code generation, overshadowing emotions of happiness, anger,
surprise, and sadness. Furthermore, we construct a ChatGPT
prompt and corresponding code dataset by analyzing the screen-
shots of ChatGPT code generation shared on social media. This
dataset enables us to evaluate the quality of the generated code,
and we will make the dataset available to the public soon. We
believe the insights gained from our work will provide valuable
guidance for future research on AI-powered code generation.

Index Terms—ChatGPT, Coding Generation, Software Engi-
neering, Large Language Models (LLMs), Generative Models,
Social Media

I. INTRODUCTION

Recently, the advancements in large language models
(LLMs) and generative models have revolutionized many ap-
plications, including free text generation, question answering,
and document summarization, enabling a wide range of real-
world services such as AI robot lawyers [1] and AI music
co-creation [2]. The field of coding, which involves writing
tasks in certain programming languages, is also benefiting
from the rapid development of generative LLMs. However,
unlike traditional writing tasks, programming requires strict
adherence to syntax and logic rules, making it more challeng-
ing for generative models to produce high-quality code.

Several studies have investigated the potential of LLMs
in software development. For instance, Barke et al. [3] and
Vaithilingam et al. [4] examined user perceptions of generative

Fig. 1. ChatGPT writes the bubble sort algorithm in Python

models in coding writing. However, many of these studies
are based on case studies, with limited consideration of
broader applications in software development. The emerg-
ing OpenAI’s ChatGPT, a member of GPT-3 LLM family,
demonstrates promising performance in code generation, at-
tracting widespread attention from stakeholders in software
engineering. As shown in Figure 1, ChatGPT can generate the
bubble sort algorithm in Python with the prompt of “write the
bubble sort in Python.” Some studies have explored the use
of ChatGPT for code generation tasks [5]–[7]. Nonetheless,
these studies did not comprehensively evaluate the overall
effectiveness of ChatGPT as a code generation and assistance
tool on a large scale.

It is challenging to conduct a large-scale study on the
performance of LLMs in code generation due to the following
reasons. First, programming languages exhibit diverse syntax
and are applicable to a wide range of tasks. For instance, SQL
is primarily utilized in database operations, while JavaScript
is commonly used in web programming. Second, code gen-
eration encompasses numerous programming tasks, including
debugging, testing, and programming, for various stakehold-
ers. Moreover, conducting user studies in the lab to investi-
gate the code generation of LLMs can be costly and time-
consuming. Therefore, conducting a comprehensive study on
the performance of LLMs that covers numerous programming
languages, tasks, and stakeholders poses significant challenges.

To address the aforementioned challenges, this paper pro-
poses a scalable crowdsourcing data-driven framework that
integrates multiple social media data sources to examine
the code generation performance of ChatGPT. The proposed
framework comprises three key components, namely keyword
expansion, data collection, and data analytics. Specifically, we
utilize topic modeling and expert knowledge to identify all
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keywords that are relevant to programming in the context of
ChatGPT, thus expanding the seed keyword of “ChatGPT.”
Using these expanded keywords, we retrieve 316K tweets and
3.2K Reddit posts related to ChatGPT’s code generation from
December 1, 2022, to January 31, 2023.

Furthermore, we conduct a comprehensive analysis using
multimodal data (text and images) to answer the following
research questions:

1) What are the most popular programming languages in
ChatGPT usage?

2) What programming scenarios, tasks, and purposes are
people using ChatGPT for?

3) What is the temporal distribution of the discussion on
ChatGPT code generation?

4) How do stakeholders perceive ChatGPT code generation?
5) What are the prompts to generate code?
6) What is the quality of the code generated by ChatGPT?
To the best of our knowledge, the proposed work represents

the first systematic study on emerging generative models in
code writing and testing. In this paper, we summarize our
contributions as follows:

• We have proposed a scalable crowdsourcing and social
data-driven framework for investigating the code genera-
tion capabilities of ChatGPT.

• We have presented a novel hybrid keyword expansion
method that incorporates words recommended by topic
modeling and experts to ensure that most of the related
social media posts are matched during data collection.

• Our study considers multiple social media platforms
(Twitter and Reddit) and multimodal data (text and im-
age) to mitigate potential biases caused by a single data
source or data type.

• We have provided data analytics from multiple perspec-
tives, including topic inference, sentiment analysis, and
data quality measurement.

• We have built a real-world programming dataset contain-
ing the ChatGPT prompt and the associated generated
code. This dataset will be released to the entire software
engineering community soon.

II. RELATED WORK

As programming generation and assistant tools, such as
CodeBERT [8] and IntelliCode Compose [9], become more
widely used, there has been an increased focus on investi-
gating the usability and interactions between users and code
generation tools [3], [4], [10], [11]. For example, Barke et
al. identified two interaction modes between programmers
and code generation tools: acceleration mode and exploration
mode, by observing how 20 programmers solved various tasks
using the code generation tool Copilot [3]. Although this
paper discussed a grounded theory of how programmers might
interact differently with Copilot, it only investigated a limited
number of users and did not reveal the reactions from users.

Vaithilingam et al. [4] performed a study on 24 partici-
pants consisting of different groups of people with minimal

and moderate experience in using Copilot and IntelliSense.
By quantitative and qualitative analysis, they observed that
participants who used Copilot failed to complete tasks more.
Unlike the above case study works, we investigate a large
dataset of feedback from users of the code generation tool
ChatGPT. Besides the user reactions, our study also examines
the performance and limitations of ChatGPT.

As ChatGPT gains more attention recently, some researchers
have studied its use for code generation [5]–[7]. Aljanabi et
al. [5] discussed the possibility of using ChatGPT as a code
generation tool. Avila et al. [6] have described how ChatGPT’s
programming capability can be used for developing online
behavioral tasks, such as concurrent reinforcement schedules,
in HTML, CSS, and JavaScript code. In their work, they
created files with extensions .html, .css, and .js, which include
the basic structure of the page, such as headings, linking
with styling elements, and other dynamic elements. In contrast
to the above works, we analyzed the performance of code
generation using ChatGPT.

When it comes to complex coding, there is always a
chance of unidentified bugs, which may lead to a code crash.
Automated Program Repair (APR) is a concept introduced to
provide automatic fixes for detected errors. In recent times,
deep learning has enabled APR, and many tools using the con-
cept of Large Language Models (LLMs) with the Transformer
technique have been developed. LLMs are giving better results
for many code-related tasks, and researchers have started to
use them for APR [12]. Tools such as Codex, CodeBERT, and
more recently ChatGPT use LLMs for code fixing.

What makes ChatGPT stand out is its ability to discuss the
source code with user interaction. Sobania et al. (2023) [13]
conducted an experiment to test the efficiency of ChatGPT in
bug fixing compared to other tools like Codex and CoCoNut.
About 40 of QuixBugs benchmark problems containing erro-
neous code were given to ChatGPT to provide solutions. The
experiment showed that ChatGPT’s performance is similar to
other APR tools like Codex. However, when given more infor-
mation about the problem through its dialogue box, ChatGPT’s
performance improved, with a success rate of 77.5%.

Although ChatGPT works fine with simple code logic, it can
be challenging to describe complex needs, such as designing
a web browser where user needs should be satisfied, with the
simple, machine-readable instructions that ChatGPT or other
AI tools use to produce code [14]. Chatterjee and Dethlefs [15]
have claimed that code generated by ChatGPT is also gender
and race biased, questioning the efficiency of the model.

Previous works and tools for automated code generation
mostly relied on using neural networks [16], [17], which
cannot match the current performance of GPT-3 models. Ray-
chev et al. [18] proposed a code completion technique using
statistical language models to discover highly rated sentences
and recommend code completion suggestions. Sun et al. [19]
introduced a novel tree-based neural architecture that incorpo-
rates grammar rules and AST structures into the network, and
it has been shown to have the best accuracy among all neural
network-based code generation methods. Ciniselli et al. [20]
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conducted a detailed empirical study on BERT models for code
completion and evaluated the percentage of perfect predictions
that match developer-written code snippets. However, while
BERT models offer a potential solution for code completion,
their performance is lower compared to LLM models such as
Copilot and ChatGPT.

In summary, there is a scarcity of research that delves into
the applications of AI-assisted code generation tools. ChatGPT
has risen as a prevalent option among these tools. The current
study aims to assess the effectiveness of ChatGPT as a code
generation tool. To our knowledge, this is the first research
that employs a dataset from social media to evaluate the
performance of a code generation tool.

III. METHOD

In this section, we present the proposed data-driven gen-
erated coding investigation framework by introducing how
to collect data of interest, how to analyze data, and how to
interpret findings.

A. Framework Overview

The overview of the proposed framework is illustrated
in Figure 2. It consists of three key components: Keyword
Selection, Data Collection, and Data Analytics. Unlike tradi-
tional user study-based research, the crowdsourcing platform
is designed to be flexible and scalable, enabling the study of
a large population over a long period of time. We will delve
into each component in detail, examining the performance of
LLMs in code generation.

B. Keyword Selection for Software Development

To ensure the quality of the collected data, we employ a
hybrid approach that combines data-driven keyword expansion
and expert-based keyword selection. This approach ensures
that the data is comprehensive and precise, eliminating the risk
of bias or incompleteness in the selection of query keywords.

As ChatGPT is one of the most popular LLMs that supports
code generation, we use ChatGPT as the seed keyword to
sample Twitter streams, harvesting tweets that mention this
term. We then perform topic modeling to determine whether
a coding-related topic is present. If a coding-related topic
is observed, we add the words belonging to this topic to
the expanded keyword set. If a coding-related topic is not
observed, we conduct a co-occurrence word analysis and
calculate the semantic similarity with the word coding to
expand the candidate keywords.

However, the data-driven keyword expansion method may
result in false positives, i.e., keyword candidates that may
not be relevant to AI-based code generation. Therefore, we
manually examine all recommended keyword candidates to
ensure the quality of the collected data. We first filter out
irrelevant keywords and propose multiple combinations of
keywords to control the precision of data collection. For
example, instead of collecting all postings containing Chat-
GPT, collecting postings containing both ChatGPT and coding
makes the retrieved data more accurate and representative.

Specifically, we leveraged Twitter Streaming APIs to sample
tweet streams containing the keyword “ChatGPT” for over 55
hours. In total, we collected 158,452 tweets, including original
tweets, retweets, and replies. After removing duplicate tweets,
we had 63,716 unique tweets. We then applied the LDA model
to infer topics based on these unique tweets, with the hope
of discovering programming-related topics. We evaluated the
number of topics ranging from 1 to 30 and found that the
convergence score achieved a relatively high and stable value
with the number of topics set as 22. For more details, please
see Figure 10. After examining the 22 topics, we identified
one of them as “Programming,” consisting of the following
words: ask, stack, knew, write, error, diffus, run, python, stabl,
scientist, email, straight, shock, gener, comput, command, use,
code, notic, brain, bug, statement, think, dead, question, admit,
happen, result, and overflow.

Combining the words in the topic of Programming, we come
up with the following keyword list – algorithm, algorithms,
bug, bugs, c#, c++, code, coding, command, commands, com-
piler, computing, debug, debugging, error, go, interpreter, java,
javascript, libraries, php, program, programming, python, r,
Ruby, shell, software, sql, stack overflow, swift, test, testing,
typescript – to crawl ChatGPT related code generation posts.

C. Data Collection

Based on the above carefully curated keywords, we leverage
two social media platforms, i.e., Twitter and Reddit to collect
data for further analytics.

1) Twitter Data: Instead of relying on Twitter Streaming
APIs, we opt to use the Twitter Historical Data Search APIs
to create our Twitter dataset for the following reasons: 1)
The streaming data is time-sensitive, making it impossible to
retrieve older data from the debut of ChatGPT if the streaming
data collection was not be launched at that time; 2) If we
only investigate the latest data (e.g., after Feb 1, 2023), it
will introduce bias as we do not know when the performance
of ChatGPT’s code generation was most widely discussed on
social media. On the other hand, the historical tweets span
the entire evolution of ChatGPT and provide a sample of user
comments since its release, enhancing the representativeness
and completeness of the crowdsourced opinions and feedback.

Twitter provides two historical data search APIs, i.e., 30-
Day Search API1 that allows for retrieval of the last 30
days and the Full-archive Search API2 that provides tweets
since 2006 when the first tweet was posted. Since ChatGPT
was released on November 30, 2022, we choose the Full-
archive Search API to harvest the data. Specially, we use
Twitter’s Academic Research API, which supports full-archive
tweet search, to retrieve ChatGPT-related data from November
30, 2022 to February 1, 2023, with the query configured to
only cover English tweets and exclude retweets by setting “-
is:retweet lang:en.” In addition to the tweet text, we collect
related Twitter media information (e.g., posted images) to

1https://tinyurl.com/2s4xt8r7
2https://tinyurl.com/ehbsjx6v
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Fig. 2. Overview of the proposed crowdsourcing framework to investigate the programming capabilities of LLMs

support fine-grained analysis. For this study, we collected
316K tweets posted between Dec. 1, 2022, and Jan. 31, 2023.

2) Reddit Data: Unlike Twitter, where the structure is
based on users following one another, Reddit is structured
around communities where posts on similar topics are grouped
together. These communities are referred to as “subreddits”
on Reddit. For instance, the subreddit /r/aww is a community
where users share cute and cuddly pictures. The initial posts
on Reddit are known as “submissions,” and the responses to
these posts are called “comments.”

To assess the performance of ChatGPT in code gen-
eration on Reddit, we concentrate on four well-known
subreddits, namely /r/ChatGPT, /r/coding, /r/github, and
/r/programming. To gather submissions from these subred-
dits, we use the Search Reddit Submissions Endpoint (/red-
dit/search/submission) through the Pushshift Reddit API [21].
Similar to Twitter data, multimedia data including images
in Reddit submissions are also retrieved. For this study, we
collected 3.2K Reddit submissions posted between Dec. 1,
2022, and Jan. 31, 2023, to analyze the code generation
performance of ChatGPT.

D. Data Analytics and Pattern Recognition

We primarily employ natural language processing and image
understanding techniques to analyze text and image data to
uncover insights and identify patterns.

1) Text Based Topic Discovery: To obtain a comprehensive
understanding of the use of ChatGPT in code generation on
Twitter and Reddit, we employ latent Dirichlet allocation
(LDA) [22], a widely used topic modeling technique, to
uncover hidden topics in the collected tweets and Reddit
submissions. We treat each tweet or submission content as
an individual document and the entire collection of tweets
or submissions as the corpus of documents. In the text pre-
processing stage, we implement commonly used techniques
such as removing stop words and frequently occurring words
like “ChatGPT,” tokenization, and lemmatization of words. We
then perform term frequency-inverse document frequency (TF-
IDF) on the combined documents to form a TF-IDF-based cor-
pus, on which latent topics are extracted using LDA models.
Following previous research on big social data analysis [23],
[24], we select the Cv metric to determine the appropriate
number of topics. This metric is known to be one of the
best coherence measures as it combines normalized pointwise
mutual information (NPMI) and cosine similarity [25].

Given that Twitter allows users to utilize #hashtags to
indicate related topics and enhance visibility through searches,
we also present the distribution of #hashtags in the collected
tweets. However, as #hashtags are rarely used on Reddit, we
do not perform this analysis for Reddit submissions.

2) Image Understanding: As ChatGPT is a text generative
model, it is expected that most images related to ChatGPT,
particularly those related to code generation, posted on so-
cial media will be text-rich. To make these images more
informative and easier to process for downstream tasks, we
suggest using an Optical Character Recognition (OCR) based
approach to convert the collected images into text. We apply
multiple OCR methods, including OpenCV-based pytesseract3

and deep learning-based easyOCR4, to the collected image
dataset. After thoroughly evaluating the OCR detection results,
we choose easyOCR to identify and extract text from the
images accurately.

3) Code Reconstruction from Image: To reconstruct the
code generated by ChatGPT, it is crucial to identify the images
that contain generated code. After examining the screenshots
of coding snippets, we found that all ChatGPT-generated code
snippets contained the keyword “Copy code” in the top-right
corner of the coding block, as shown in Figure 1. Therefore,
we selected all images containing the ”Copy code” keyword
for further analysis.

We proposed two methods to recover the code generated
by ChatGPT. The first one is to extract the code directly
from the OCR results. We found that it is crucial to address
any indentation issues for indentation-sensitive programming
languages, such as Python, as a high percentage of errors can
occur due to improper indentation. However, automatically in-
denting any given code can be a complex and challenging task.
A simple script that looks for loops and specific statements to
increase and decrease the indentation count does not work on
all codes, especially if the code has multiple indentation styles
and conditional statements.

An alternative method to obtain the code is reproducing it
using the identical prompt. Specifically, we can identify the
prompt and input it into ChatGPT web services5 to generate
the code. Once we have downloaded the newly produced code,
we can assess and evaluate it. In our study, we adopted this
reliable method to reconstruct the code generated by ChatGPT.

3https://pypi.org/project/pytesseract/
4https://github.com/JaidedAI/EasyOCR
5https://openai.com/blog/chatgpt/
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4) Sentiment Analysis: Considering that ChatGPT may
trigger diverse emotions in code generation, we do not think
the three categories of positive, negative, and neutral can
cover all involved emotions. In order to accurately reflect
the various and complex emotions expressed in social media
users’ comments, we choose to categorize them into more
inclusive emotions: Happy, Angry, Sad, Surprise, and Fear. To
achieve this, we utilize Text2Emotion [26], a Python package
capable of analyzing sentiments and categorizing them into
the aforementioned five emotions.

5) Code Quality Evaluation: To assess the quality of the
code generated by ChatGPT, we are utilizing Flake8 [27],
which is a wrapper around PyFlakes, pycodestyle, and Ned
Batchelder’s McCabe script. Flake8 allows the use of any
of these tools by launching Flake8, and it assigns a unique
code number to each error code. The output of warnings and
errors is displayed per file. We choose Flake8 as our evaluation
tool because it is one of the most powerful and flexible
tools available, providing a wide range of error codes while
remaining fast to run checks. Flake8 is particularly effective
when checking for correctness and whitespace issues, making
it an ideal choice for our purposes.

IV. EVALUATION AND FINDINGS

In this section, we present the evaluation results and high-
light our findings on the performance of code generation
by ChatGPT. We summarize the topics discussed in social
media posts, the strengths and weaknesses of ChatGPT’s code
generation capabilities.

A. Programming Language Distribution

ChatGPT supports code generation for multiple program-
ming languages. We illustrate the popularity of the top 12
programming languages across Twitter and Reddit in Figure
3. We can see that python is the most popular language among
both communities and far ahead of other languages. Obviously,
python has become the top 1 program language in many fields,
such as artificial intelligence, machine learning, data analytics,
automation, scientific computing, and others. JavaScript, R,
and Shell/Bash, among the most popular programming lan-
guages nowadays, are also well-supported by ChatGPT.
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Fig. 3. Programming language distribution

B. Topics Related to Code Generation
We generated topics for the tweets containing keyword

“ChatGPT” and programming related words using the LDA
model. Based on the coherence score presented in Figure 4,
we select 17 topics finally. The 17 topics and the word list
of each topic are presented in Table II (see Appendix B).
The topic modeling results indicate that ChatGPT has been
used for different purposes regarding code generation, such
as debugging codes (topic 9, topic 13, topic 17), testing
codes/algorithms (topic 5, topic 16), preparing programming
interview (topic 2 and topic 4), working on programming-
related assignments (topic 3, topic 6), and other related tasks.
Twitter users also notice that ChatGPT’s capacity in code
generation is limited (topic 1). Still, the ethic issues and social
responsibility aspect of ChatGPT have not been discussed
much among users.
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To further investigate the implications and impacts of Chat-
GPT on different AI technologies, applications, and industries,
we extracted the hashtag-based topics, which is shown in
Figure 5. The hashtags we use include: #AI, #OPENAI,
#Artificialintelligence, #Programming, #Python, #Coding, and
others. We group the hashtags into five clusters: ChatGPT, AI
& ML & DS, Company, Programming, and Other Tech. Based
on the topic frequency in Figure 5, we can see that ChatGPT
has a great impact on AI and its related fields. Both academia
and IT industry need to pay attention to this new technology.
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C. Temporal Distribution
Temporal analysis can be used to examine the popularity

over time. Figure 6 visualizes the daily distribution of posts on
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Twitter (blue) and Reddit (yellow) related to ChatGPT’s code
generation in the first two months after its launch. ChatGPT
discussion spread faster on Twitter than Reddit. We observe a
peak of the ChatGPT code generation on Twitter and Reddit
at the end of the first week of the release of ChatGPT. The
popularity decreased from the second week, but somehow still
very popular on both platform. Even after two months, the
attention on ChatGPT is still stable, indicating ChatGPT is
helpful for code generation.
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Fig. 6. Daily distribution of posts related to ChatGPT’s code generation in
the first two months after its launch

D. Sentiment on Code Generation
Figure 7 presents sentiment analysis results for code gener-

ation in eight programming languages across two social media
platforms: Twitter and Reddit. The emotions were categorized
into five distinct groups: happiness, anger, surprise, and fear.

Overall, fear is the most commonly expressed emotion on
both platforms for all programming languages, likely due to
concerns about ChatGPT’s code quality and its potential im-
pact on human jobs. We observed that fear is more frequently
expressed for SQL, Java, and C#.

The second most commonly expressed emotion is sadness
for Python, JavaScript, R, C++, and Shell on the Twitter
platform. This may also be linked to concerns about Chat-
GPT’s potential impact on human jobs. Surprise is the third
most commonly expressed emotion for Python, JavaScript, R,
Shell, and C++. The surprise may result from the quality of
the generated code. Happiness and anger are the two least
frequently observed emotions.

We also compared the sentiment analysis results on both
platforms and found similar patterns for all programming
languages except SQL and C++. For SQL, Reddit users
expressed more sadness than Twitter, possibly due to their
greater knowledge about SQL and concerns about the quality
of ChatGPT’s code generation. Regarding C++, we observed
that Reddit users showed more happiness than Twitter users,
which may indicate less worry about ChatGPT’s potential
threat to their jobs.

E. A Public Dataset of Prompts and Generated Code
From the OCR results of Twitter images, we identified

and extracted 332 prompts. Figure 8 provides a wordcloud
overview of all extracted prompts, where Python-related ques-
tions are the most common. In particular, Twitter users prefer
words such as “write”, “code”, “function”, and “program”
when constructing their coding prompts.

TABLE I
CODE QUALITY RESULTS BY FLAKE8

Code Description Percentage

E501 line too long (114 >79 characters) 29.39%
E231 missing whitespace after ’,’ 15.54%
E302 expected 2 blank lines, found 1 13.51%
W293 blank line contains whitespace 10.14%
E402 module level import not at top of file 5.41%
E305 expected 2 blank lines after class, found 1 4.73%
E265 block comment should start with ’# ’ 4.39%
W291 trailing whitespace 2.70%
E999 SyntaxError: invalid syntax 2.36%
E227 missing whitespace around bitwise or shift operator 1.69%
W292 no newline at end of file 1.69%
E101 indentation contains mixed spaces and tabs 1.35%
F401 ’torch’ imported but unused 1.35%
W191 indentation contains tabs 1.35%
W391 blank line at end of file 1.35%
E261 at least two spaces before inline comment 1.01%
E225 missing whitespace around operator 0.68%
F811 redefinition of unused ’pymesh’ from line 5 0.34%
E902 TokenError: EOF in multi-line statement 0.34%
F821 undefined name ’output value’ 0.34%
E741 ambiguous variable name ’I’ 0.34%

We constructed a dataset of .py files for all Python-related
prompts, with each .py file containing the prompt and the
corresponding code generated by ChatGPT. Figure 9 shows
a sample .py file from the dataset, where the prompt is
commented at the beginning of the file. The complete dataset
will be publicly released soon to the software engineering
community.

F. Code Quality Evaluation

We submitted the Python code snippets generated by Chat-
GPT to Flake8 as individual .py files to check for quality and
errors. Flake8 identified the error codes for each file, along
with the position and description of the error. After evaluating
the code snippets using Flake8, we found that the majority
of the errors are pycodestyle errors, with code E (80.74%),
followed by code W (17.25%). The least number of errors are
attributed to pyflake with code F (2.03%). Among the unique
error codes, there are 13 for E, with the majority of errors
linked to code E501 (line too long). Additionally, there are five
unique W codes and three unique F codes. Table IV-F provides
a detailed summary of the evaluation results, including the
percentage of each Flake8 code for the overall evaluation.

V. CONCLUSION

This paper presents a framework for exploring the code
generation capabilities of ChatGPT through the analysis of
crowdsourced data on Twitter and Reddit. The results show
that Python and JavaScript are the most frequently discussed
programming languages on social media and that ChatGPT
is used in a variety of code generation domains, e.g., debug-
ging codes, preparing programming interviews, and solving
academic assignments. Sentiment analysis reveals that people
generally have fears about the code generation capabilities of
ChatGPT, rather than feeling happy, angry, surprised, or sad.
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Fig. 7. Sentiment analysis results on code generation for eight programming languages

Fig. 8. WordCloud of prompts

The study also includes the construction of a code generation
prompt dataset, which will be made publicly available, and
an evaluation of the quality of code generated by ChatGPT
using Flake8. We hope this work provides valuable insights
into the adoption of ChatGPT in software development and
programming education.

APPENDIX

A. Coherence Scores of LDA with Different Number of Topics

One of the most important steps for applying topic modeling
such as LDA is to select an appropriate number of topics
contained by the corpus [28]. The reason is that choosing too
few topics will produce over-broad topics while choosing too
many topics will lead to lots of overlapping between topics. In
this study, we choose the Cv metric, a widely used coherence
measurement to decide the optimal number of topics in our

Fig. 9. A sample in the public dataset of prompts (Line 3) and generated
code (Line 4 - Line 17)

corpus. Topic coherence scores a single topic by combining
normalized pointwise mutual information (NPMI) and the
cosine similarity between words in the topic [25]. The higher
the coherence score, the higher the quality of the generated
topics; however, low quality topics may be composed of highly
unrelated words that cannot fit into another topic, leading a
low coherence score [25]. In our corpus, we evaluated the
topic numbers ranging from one to thirty with 500 passes,
and we repeated the experiments five times in each step when
generating the topics to avoid random errors in Cv metric.
Figure 10 presented the evaluation results on all the tweets
containing keyword “ChatGPT”. In this figure, the horizontal
axis indicates the number of topicsm, the vertical axis indicates
the coherence score, the top in the shadow represents the max
coherence score and the bottom represents the min coherence

7



score with the number of topics set differently. Since either
the selected number of topics (k) is too big (i.e., k > 30)
or too small (i.e., k<5) will make the topic interpretation
problematic, we finally selected 22 topics for the highest
coherence score between 5 to 30 topics.
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0.40
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nc

e 
sc

or
e 

C v

Fig. 10. Coherence scores of LDA with different number of topics

B. LDA Topics Related to Code Generation on Twitter

Table II illustrates the 17 topics inferred by the LDA model
from the fine-toned ChatGPT’s code generation related tweets.
We provided the first 40 words for each topic to demonstrate
the most common words. Our analysis shows that ChatGPT
has been utilized for various purposes in code generation,
including debugging codes (topics 9, 13, and 17), testing
codes/algorithms (topics 5 and 16), preparing for programming
interviews (topics 2 and 4), working on programming-related
assignments (topics 3 and 6), and other related tasks.
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[27] T. Ziadé and I. Cordasco, “Flake8: Your tool for style guide enforcement.
2021,” URL: http://flake8. pycqa. org (besucht am 27. 05. 2019).

[28] H. Chen, J. Chen, and H. Nguyen, “Demystifying covid-19 publications:
institutions, journals, concepts, and topics,” Journal of the Medical
Library Association: JMLA, vol. 109, no. 3, p. 395, 2021.

8



TA
B

L
E

II
T

H
E

E
X

T
R

A
C

T
E

D
T

O
P

IC
S

U
S

IN
G

T
H

E
L

D
A

T
O

P
IC

M
O

D
E

L

R
an

k
To

pi
c

1
To

pi
c

2
To

pi
c

3
To

pi
c

4
To

pi
c

5
To

pi
c

6
To

pi
c

7
To

pi
c

8
To

pi
c

9
To

pi
c

10
To

pi
c

11
To

pi
c

12
To

pi
c

13
To

pi
c

14
To

pi
c

15
To

pi
c

16
To

pi
c

17

1
ca

pa
c

so
ft

w
ar

ex
am

tu
re

la
ng

ua
g

st
ud

en
t

ha
ha

na
h

co
de

de
y

w
ri

te
er

ro
r

qu
e

lo
gi

n
st

ab
l

te
st

po
ur

2
br

o
en

gi
n

sc
ho

ol
in

te
rv

ie
w

pr
og

ra
m

ch
ea

t
w

ok
e

de
le

t
us

e
so

ng
co

de
ne

tw
or

k
co

n
si

m
pl

ifi
di

ff
us

tr
ad

e
de

3
ha

rd
er

de
ve

lo
p

m
ba

pa
ss

co
de

te
ac

he
r

co
m

m
it

no
bo

di
as

k
pr

of
es

s
us

e
va

n
pa

ra
ru

bi
co

m
pa

ni
on

co
m

pu
t

es
t

4
te

st
jo

b
te

st
te

st
te

st
es

sa
y

br
ok

e
ev

er
yb

od
i

w
ri

te
ph

as
e

ge
ne

r
di

e
un

a
br

ok
en

til
fr

ee
qu

e
5

m
ed

iu
m

re
pl

ac
pa

ss
ca

nd
id

m
od

el
as

si
gn

an
no

y
pu

bl
ic

li
w

or
k

ev
ol

ut
as

k
ee

n
po

r
ba

ttl
sh

ip
m

on
ey

pa
6

sh
it

co
de

la
w

flu
tte

r
us

e
m

al
ic

i
pa

rt
ne

r
ju

dg
tr

i
gl

ad
cr

ea
t

he
t

bl
en

de
r

pr
im

e
pl

ot
pa

y
su

r
7

un
lo

ck
go

og
l

in
te

lli
g

tr
ee

al
go

ri
th

m
sc

ho
ol

de
ar

ro
ut

he
lp

te
m

p
te

st
po

lit
la

he
lp

er
di

sc
or

d
so

ft
w

ar
av

ec
8

pr
em

iu
m

us
e

pa
ne

w
sl

et
t

ge
ne

r
ed

uc
st

er
oi

d
so

m
eb

od
i

pr
og

ra
m

su
ff

er
py

th
on

ad
ve

nt
lo

flo
w

je
st

pa
id

le
9

re
ac

tio
n

te
ch

no
lo

g
ar

tifi
ci

le
ap

hu
m

an
us

e
fli

la
m

bd
a

tim
e

fr
eq

ue
nt

pr
og

ra
m

m
es

sa
g

so
ft

w
ar

ta
bl

m
em

be
r

us
e

un
e

10
sp

in
pr

og
ra

m
pr

of
es

so
r

co
nd

uc
t

w
ri

te
m

al
w

ar
to

uc
h

co
ff

e
go

od
sa

d
co

m
m

an
d

oc
cu

r
de

l
ra

p
ac

ad
em

ia
se

rv
ic

m
ai

11
ey

e
to

ol
w

ha
rt

on
eq

ui
va

l
qu

es
tio

n
de

te
ct

ou
ts

ou
rc

cu
ri

os
qu

es
tio

n
co

m
pe

tit
or

pr
om

pt
do

om
as

se
m

bl
do

g
le

ak
cr

yp
to

qu
i

12
ta

b
th

in
k

pr
og

ra
m

ho
lid

ay
an

sw
er

cy
be

rs
ec

ur
ci

ta
t

fa
rm

an
sw

er
se

m
an

t
vi

de
o

m
et

co
m

o
ch

ai
n

ci
te

ve
rs

io
n

ce
st

13
sa

t
ta

ke
st

oc
k

fa
il

as
k

ki
d

bi
sa

re
vo

lu
t

kn
ow

ps
eu

do
m

ak
e

pr
of

es
si

on
pe

ro
od

d
ba

re
bi

tc
oi

n
pa

r
14

fa
m

ili
ne

w
un

iv
er

s
ex

tr
ac

t
da

ta
w

ri
te

ap
pa

r
re

ci
p

bu
g

al
or

w
eb

si
t

al
ph

a
er

ro
r

sk
ip

w
if

e
co

de
da

n
15

th
o

se
ar

ch
m

ed
ic

du
ck

le
ar

n
so

ft
w

ar
gr

ea
te

st
tic

ke
t

gi
ve

ex
po

ne
nt

i
ap

p
ov

er
lo

ad
py

th
on

m
ak

er
w

al
le

t
pr

ic
e

fa
ir

16
w

ri
te

fu
tu

r
gr

ad
e

be
ha

v
tr

ai
n

te
ac

h
di

sa
pp

oi
nt

no
w

ad
ay

le
ar

n
cr

yp
to

cu
rr

co
nt

en
t

pe
rs

is
t

nu
t

ha
ik

u
in

ve
st

ig
se

ll
fa

it
17

lim
er

ic
k

w
ri

te
ba

r
ex

te
nt

th
in

k
co

lle
g

sw
ee

t
en

co
un

t
fix

au
x

po
st

fa
ct

ua
l

te
st

fr
am

ew
or

k
ni

e
co

st
te

st
18

ho
li

ye
ar

bu
si

si
ri

so
ft

w
ar

ho
m

ew
or

k
pa

rt
i

re
sp

ec
t

pr
ob

le
m

ye
a

w
an

t
ya

ll
ch

e
co

ns
ci

ou
s

iv
e

cl
ou

d
ja

i
19

ex
pl

oi
t

go
po

se
sl

id
e

un
de

rs
ta

nd
co

de
un

tu
k

bo
th

er
th

in
g

la
yo

ff
id

ea
an

dr
oi

d
ro

bo
t

st
ar

ri
ch

al
go

ri
th

m
pl

u
20

ac
ce

pt
te

ch
m

us
k

ap
pl

co
m

pu
t

ca
re

er
w

hi
te

st
ra

ig
ht

ge
ne

r
ri

de
tw

ee
t

ne
ur

al
to

do
re

vi
s

la
ug

h
bu

y
co

de
21

sk
yn

et
st

ac
k

ed
uc

an
si

bl
te

xt
ac

ad
em

20
21

in
te

re
st

in
gl

i
m

ak
e

ca
ve

tw
itt

er
da

t
to

y
w

or
ko

ut
bi

ll
em

pl
oy

e
vo

u
22

as
se

t
pe

op
l

so
ft

w
ar

ob
se

ss
re

sp
on

s
ha

ck
er

si
r

im
ag

in
ar

i
py

th
on

sh
am

e
he

lp
su

bt
l

in
je

ct
la

te
x

m
om

m
ak

e
to

ut
23

al
ex

a
am

p
ca

t
se

nt
ie

nt
m

ak
e

pr
og

ra
m

pu
m

p
ha

ha
ha

de
bu

g
st

ra
ng

bu
ild

re
ad

ab
l

ha
ce

r
ex

te
nd

el
ab

or
az

ur
lu

i
24

lo
st

m
ak

e
pu

bl
ic

do
ct

or
w

ay
se

cu
r

vo
te

gr
ab

ex
pl

ai
n

ex
cl

us
sc

ri
pt

ap
ol

og
ar

tifi
ci

an
al

ys
un

re
al

po
w

er
co

m
m

25
w

ee
ke

nd
te

st
lic

en
s

st
ud

io
ne

ed
pl

ag
ia

r
ya

ng
ir

re
le

v
er

ro
r

se
as

on
tr

i
m

en
di

a
fiv

e
vi

si
t

op
en

bi
r

26
as

k
pr

od
uc

t
qu

an
tu

m
en

tit
i

na
tu

r
te

st
an

yb
od

i
pe

er
go

og
l

ca
w

or
k

in
fin

it
pu

ed
w

at
er

m
ar

k
gr

ad
ua

t
co

m
pa

ni
so

n
27

dr
iv

e
ov

er
flo

w
co

un
tr

i
hu

nt
se

e
pa

pe
r

ol
de

r
ce

rt
if

ev
en

in
ne

r
se

e
pl

ea
s

du
ne

bo
om

st
af

f
ne

ed
m

on
28

re
fr

es
h

w
ay

in
ve

st
ro

ll
pe

op
l

un
iv

er
s

th
re

w
co

ok
te

st
th

eo
ri

ch
ec

k
sc

am
so

br
m

on
ito

r
st

re
ng

th
pr

og
ra

m
su

i
29

as
pe

ct
w

or
ld

st
ar

tu
p

ex
am

in
cr

ea
t

at
ta

ck
th

ir
d

su
pe

ri
or

fin
d

to
u

ne
w

ce
nt

er
al

go
ob

se
rv

cy
cl

am
az

on
bu

g
30

si
ng

ul
ar

ge
ne

r
st

re
am

st
re

ss
go

od
ne

w
sc

re
w

sa
la

ri
ne

ed
pi

pe
lin

te
xt

tr
um

p
ou

tlo
ok

as
so

ci
ite

m
us

er
pe

ut
31

co
m

pr
eh

en
s

w
or

k
te

sl
a

na
tio

n
on

e
ha

ck
fo

ot
ba

l
ad

m
in

so
lv

tr
op

ar
tic

l
cr

aw
l

cr
uc

ia
l

br
ot

he
r

ki
ng

to
ke

n
bi

en
32

ca
su

al
se

e
sc

or
e

ja
nu

ar
i

to
ol

ge
ne

r
as

m
er

g
be

tte
r

do
nn

er
to

ol
w

ho
ev

er
pe

r
co

ol
es

t
ow

n
m

ill
io

n
qu

il
33

tr
av

el
ch

an
g

fir
m

se
c

go
og

l
th

re
at

cr
im

e
cl

ub
da

y
ec

os
ys

te
m

le
t

ka
n

m
on

ke
y

nu
m

be
r

co
ac

h
so

ur
c

qu
an

d
34

se
rv

er
tim

e
la

b
ru

bb
er

ne
w

pu
zz

l
cl

on
e

sh
ow

ca
s

on
e

st
re

am
lin

bl
og

fr
ie

nd
li

es
ta

sa
nt

ia
go

gy
m

w
ay

sa
n

35
w

ar
he

lp
til

l
al

on
gs

id
co

nv
er

s
cr

ea
t

br
ig

ht
dr

ea
m

re
al

li
ni

ck
bo

t
co

nt
ac

t
m

uy
pr

es
s

ac
e

w
ri

te
ge

n
36

fu
ck

le
ar

n
le

ar
n

pr
em

ie
r

m
ac

hi
n

cr
ac

k
w

om
an

co
un

te
r

ex
am

pl
w

ea
th

er
co

pi
co

de
tie

n
sa

nd
bo

x
al

e
po

si
t

no
n

37
st

ea
l

sk
ill

la
w

ye
r

m
at

ur
ba

se
ba

n
m

an
ne

r
cu

p
co

pi
lo

t
ev

il
th

re
ad

oo
k

se
r

lin
ea

r
de

lig
ht

in
ve

st
bo

n
38

w
ei

rd
sm

ar
t

fin
al

sa
tis

fi
am

p
em

ai
l

gu
i

sl
ee

p
w

an
t

m
ea

nw
hi

l
im

ag
ne

t
su

bs
ta

nt
i

re
si

st
go

d
m

et
a

ce
tt

39
ile

co
nt

ra
ct

w
or

ld
de

cl
ar

de
si

gn
de

ve
lo

p
nu

m
er

w
in

ne
r

ac
tu

al
m

on
d

gi
ve

m
en

ta
l

po
w

er
po

in
t

sc
re

en
sh

ot
sp

ar
ro

w
go

py
th

on
40

ve
rb

at
im

co
m

pa
ni

fo
un

de
r

w
is

do
m

kn
ow

co
nc

er
n

w
or

st
up

co
m

w
ay

ar
is

ch
at

in
si

st
ha

y
at

m
bo

y
bi

lli
on

tu
re

9


